Community Flow Monitoring Network

Vancouver Island

FALL 2025 Network Meeting

November 28, 2025

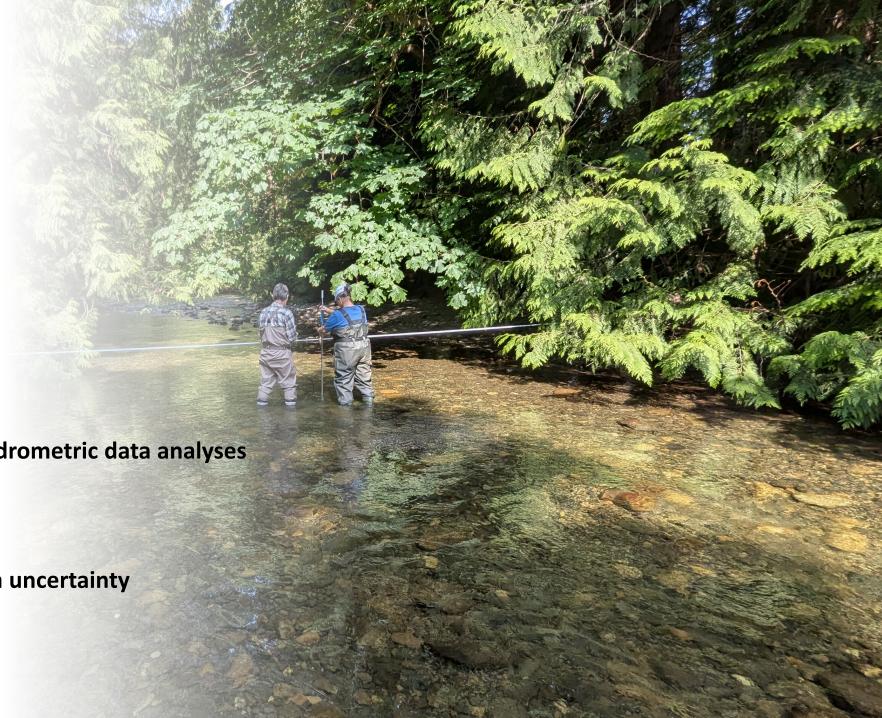
10:00 AM - 12:00 PM

Via Zoom

Project funding and support provided by:

Ministry of Environment and Parks

The McLean Foundation



Agenda

1) Brief program update

- 2025 Recap
 - New station
 - New equipment
 - Station info and reports
 - Measurements summary
- High flow safety
- Plans for 2026
- 2) Sarah Hardy Examples of hydrometric data analyses
- 3) Question / Discussion Period
- 4) Sarah Hardy Evaluating data uncertainty

Flo-Mo Network 2025

Community Flow Monitoring Network

Vancouver Island


New station

Community Flow Monitoring Network

Nanoose Creek near HWY 19 crossing – 08HB0010

Flo-Mo Network 2025 (so far)

10 stations (9 continuing, 1 new)

103 site visits!!

310+ volunteer hours

2025 - What's new

Direct read cables

Station handouts

3-year Summary Report

2025 – What's new

Station handouts

3-year Summary Technical Report

- Installed at 3/10 stations
- Allow download without removing logger from housing
- Need Solinst cap

2025 - What's new

Direct read cables

Station handouts

3-year Summary Report

Page 1/2	HYDROMETRIC STATIO	IN DESCRIPTION		Page 2/2 HYDROMETRIC SITE SKETCHES
Station #:	08HB0031	Operating Period:	annual	Site Map of bench marks and surrounding features:
Station Name:	Beach Creek @ Hemsworth Road			
Date Established:	2020-07-23	Contact:	S. Woroniak	BM4 culvert
Operating Agency: Technician:	QBS			SCALINIA - BAMI
lechnician:	S. Woroniak	Region:	Qualicum Beach	, Low Flow control 23
Latitude (dec.):	49.349083	Longitude (dec.):	-124.43	BMS High flow control
Telemetry(Y/N):	N	Telemetry Type:		II - BMS
Ontine Description and	n			
Station Description and	Purpose: arge for Beach Creek, small 2nd order tirbuta	ne /nat na umte la managent	ad in Eurobandon Adhearahaa	
	inge to ribeach creek, small 2nd order timbuta h OCP (2018) for accurate stream & watersh		eu in rresnwater Atlas: chec	, П Д , п
Town or o dark diff beak	noc P (2016) for acculatest learn to waters in	ed description).		Level survey spot (approx)
Location Description:				<u> </u>
	ale contribute and a second second second second	- ad to the action when an elice		
Site is located beneath:	the walking path connecting Hems worth Rd	and Village Way. Two parking	g options (off Village Way, o	Low flow MMT option:
		and Village Way. Two parking	g options (off Village Way, or	Low flow MMT option: through colors; 25 m High flow MMT option 2
Site is located beneath:		and ∀illage Way. Two parking	g options (off Village Way, or	Low flow MMI option: through culvert, 30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath: comer of Hemsworth &				Low flow MMT option: through culvert, ~ 30 m upstream to perched culvert
Site is located beneath: comer of Hemsworth & Access Method:	Chester).	Station Type:	g options (off Village Way, or	Low flow MMT option: through outvert, "30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath: comer of Hemsworth & Access Method:	Chester).			Low flow MMI option: through culvert, 30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath: corner of Hems worth & Access Method: Regulated (Y/N):	Chester). Vehicle	Station Type:		Low flow MMI option: through culvert, 30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath: comer of Hemsworth & Access Method: Regulated (Y/N): Parameters Collected (Y/	Chester). Vehicle	Station Type: U/S Allocation:		Low flow MMI option: through culvert, 30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath comer of Hemsworth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp	Vehicle /NO: Y AirTemp N	Station Type: U/S Allocation:	s/D	Low flow MMI option: through culvert, 30 m upstream to perched culvert and deep pool (volumetric
Site is located beneath comer of Hems worth & Access Method: Regulated (Y/N): Parameters Collected (Y/Water Temp Reference Gauge Metho	Vehicle /NO: Y AirTemp N	Station Type: U/S Allocation:	s/D	Lose flow MMT option 2 through collent; 2 Sin Devert and deep pool (polumetric bucket fill method) N High flow MMT option 2 N
Site is located beneath a comer of Henra worth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staffgauge mounted to	Chester). Vehicle /NJ: Y AirTemp N d: cubert face (downstreams kile of culvert)	Station Type: U/S Allocation:	s/D	Lose flow MMT option 2 through collent; 2 Sin Devert and deep pool (polumetric bucket fill method) N High flow MMT option 2 N
Site is located beneath is comer of Hensworth & Access Method: Regulated (V/N): Parameters Collected (V, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a	Chester). Vehicle /NJ: Y AirTemp N d: cubert face (downstreams kile of culvert)	Station Type: U/S Allocation: Baro Pressure	s/D	Lose flow MMT option 2 through collent; 2 Sin Devert and deep pool (polumetric bucket fill method) N High flow MMT option 2 N
Site is located beneath is comer of Hems worth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Perched cubert located	Chester). Vehicle /N): Y AirTemp N d: culvert face (downstreamside of culvert) und methods:	Station Type: U/S Allocation: Baro Pressure	S/D N Stage Y	Location map:
Site is located beneath comer of Hemsworth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Peiched cubert located Trickly to find good cross	Chester). Vehicle /Ng: Y AirTemp N d: culvent face (downstreams ide of culvent) und methods: "30 m us culvent, great for buc let fills at lo	Station Type: U/S Allocation: Baro Pressure w flow. n work (mod- to high flows o	S/D N Stage Y	Location map:
Site is located beneath comer of Hemsworth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Peiched cubert located Trickly to find good cross	Chester). Vehicle /NJ: Y Air Temp N d: Cubert face (downstreams ide of cubert) and methods: "30 m us cubert, great for buc let fills at loses ection for transect. 20-30 m d/s cubert cases."	Station Type: U/S Allocation: Baro Pressure w flow. n work (mod- to high flows o	S/D N Stage Y	Location map: Location map:
Site is located beneath comer of Hensworth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Periched ouhert located Trickly to find good cross	Chester). Vehicle /NJ: Y Air Temp N d: Cubert face (downstreams ide of cubert) and methods: "30 m us cubert, great for buc let fills at loses ection for transect. 20-30 m d/s cubert cases."	Station Type: U/S Allocation: Baro Pressure w flow. n work (mod- to high flows o	S/D N Stage Y	Location map:
Site is located beneath comer of Hensworth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Periched ouhert located Trickly to find good cross	Chester). Vehicle /NJ: Y Air Temp N d: Cubert face (downstreams ide of cubert) and methods: "30 m us cubert, great for buc let fills at loses ection for transect. 20-30 m d/s cubert cases."	Station Type: U/S Allocation: Baro Pressure w flow. n work (mod- to high flows o	S/D N Stage Y	Location map: Location map:
Site is located beneath is comer of Henry worth & Access Method: Regulated (Y/N): Parameters Collected (Y, Water Temp Reference Gauge Metho Staff gauge mounted to Measurement Sections a Perchad culver located culver located in the Collection of t	Chester). Vehicle /NJ: Y Air Temp N d: Cubert face (downstreams ide of cubert) and methods: "30 m us cubert, great for buc let fills at loses ection for transect. 20-30 m d/s cubert cases."	Station Type: U/S Allocation: Baro Pressure w flow. n work (mod- to high flows o but only at higher flows.	S/D N Stage Y nly) - watch for cutbanks an	Location map: Location map:

- QBSS does regular bucket fills in the summer and borrows a FT to do higher flows in winter

- fish monitoring and water quality sampling occurs nearby

- walkdown to gauge can be slippery when wet - grassy hill off of walking path (not flagged, small trail on northwest side of

2025 – What's new

Direct read cables

Station handouts

3-year Summary Report

Prepared for HCTF

Covers April 2022 – Mar 2025

Available on website under Resources tab

Initiating a Community-Based Flow Monitoring Network for ECVI

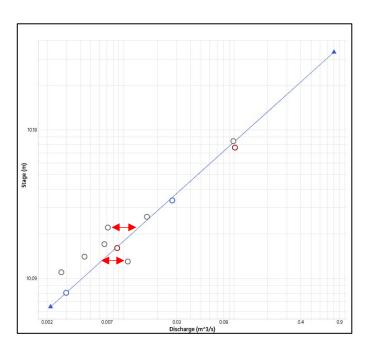
Habitat Conservation Trust Foundation - Technical Report - Year 3 (2024-25)

Prenared by:

Ally Wall, B.Sc. Aquatic Research & Restoration Centre B.C. Conservation Foundation #105-1885 Boxwood Road Nanaimo. BC V95 SX9

October 9, 2025

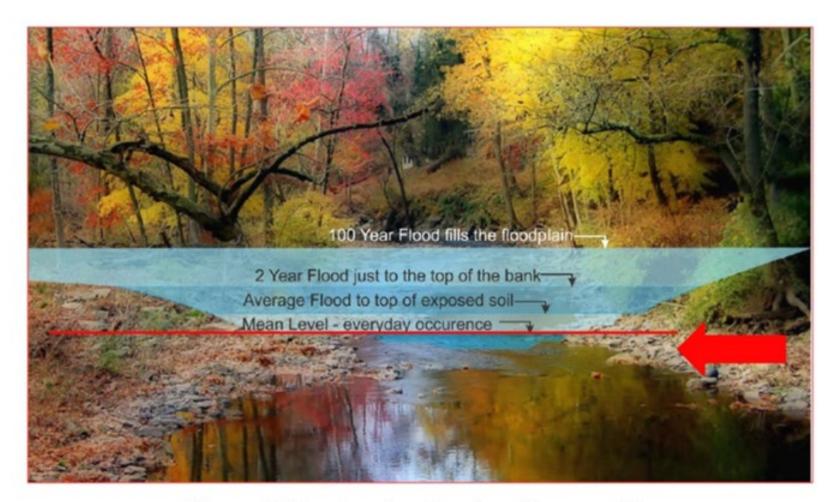
2025 Site Visit Summary


	#	Site Visits		% E	rror	Uncertai	nty (%)
Station	Stage-Discharge	Stage only	Total	Min	Max	Min	Max
Tsolum River	6/6	0	6	-0.66	8.40	±2.6	±4.0
Wilfred Creek	5/6	2	7	-10.95	-31.66	±4.1	±6.9
Cook Creek	6/6	0	6	0.53	69.22	±5.2	±24.3
Grandon Creek	4/6	19	23	-1.54	-17.77	±2.1	±9.9
Beach Creek	4/6	1	6	-20.74	89.19	±4.3	±11.8
Departure Creek	6/6	4	10	-2.19	64.27	±4.5	±9.5
Morrison Creek	7/6	0	7	-1.52	-34.91	±2.4	±6.4
Walley Creek	8/6	1	9	-3.18	75.07	±4.2	±19.2
Cottle Creek	11/6	15	26	1.05	-24.82	±2.3	±12.0
Nanoose Creek	2/6	1	3	-	-	±2.3	±8.0

Community Flow Monitoring Network

Vancouver Island

2026 Spring Measurements



Often February – April is best time to measure

- Clear control
- Can observe many conditions (high, mid, low flow)

Flow Data Analysis and Interpretation

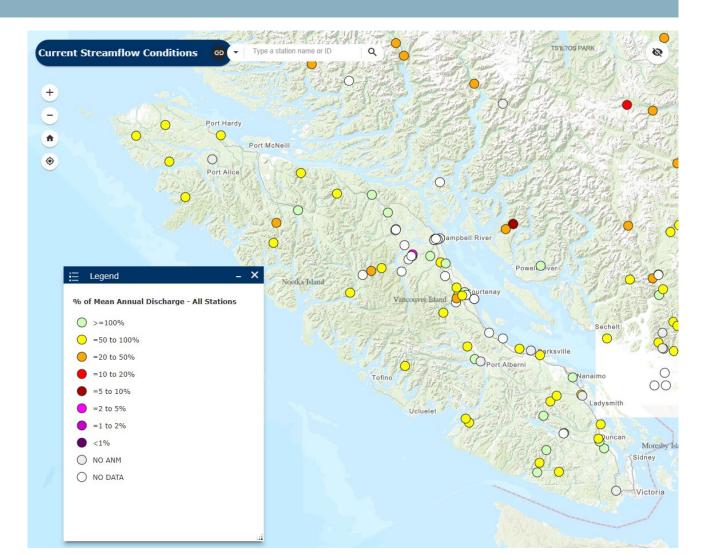
- What questions are you interested in answering with your flow data?
- What types of information would be most valuable to you and/or others who you wish to share data with (e.g., local government)?
 - How do we apply the flow data to answer our questions/objectives?
 - How can we link it to other information we have?
 - ➤ What methods of analysis are available? e.g., %MAD, CEFT, FPST
 - What supports are available to help with analysis and interpretation?

Stream Water Levels - at various flow conditions

Basic Data Analysis

- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

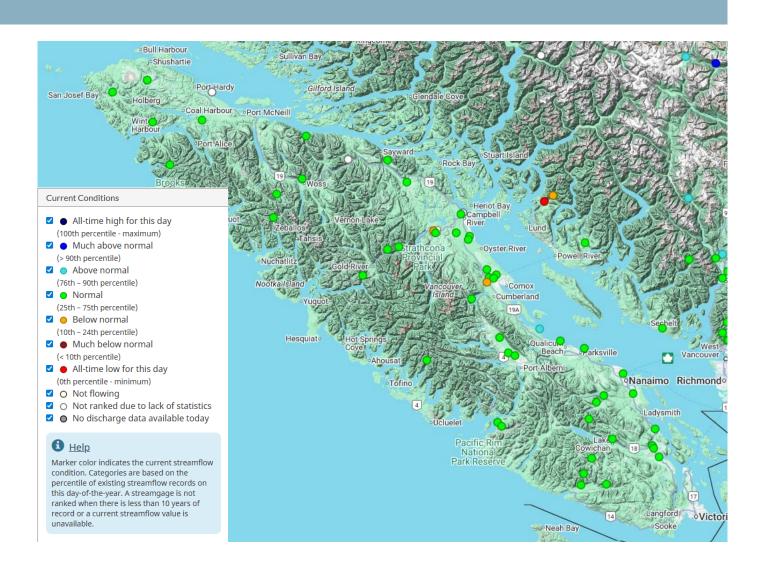

- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

- Averaging daily discharge values over year (MAD) or month (MMD)
- Drought modeling often reports current streamflow conditions as %MAD
 - Often related to biological habitat availability
 - Flows of >20%MAD for rearing fish (BC)

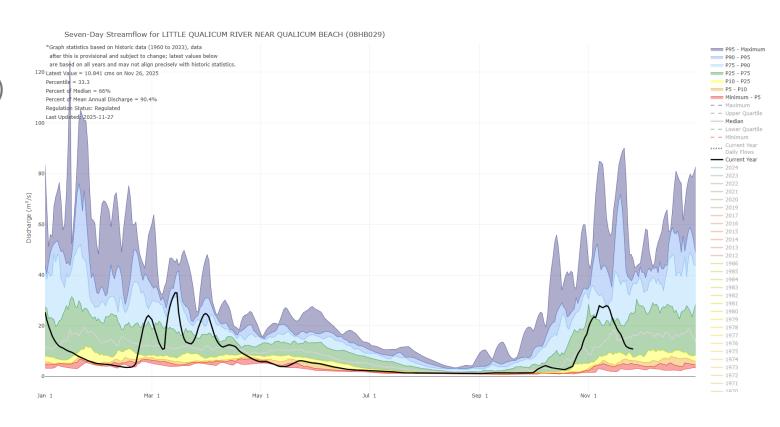
- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period


- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

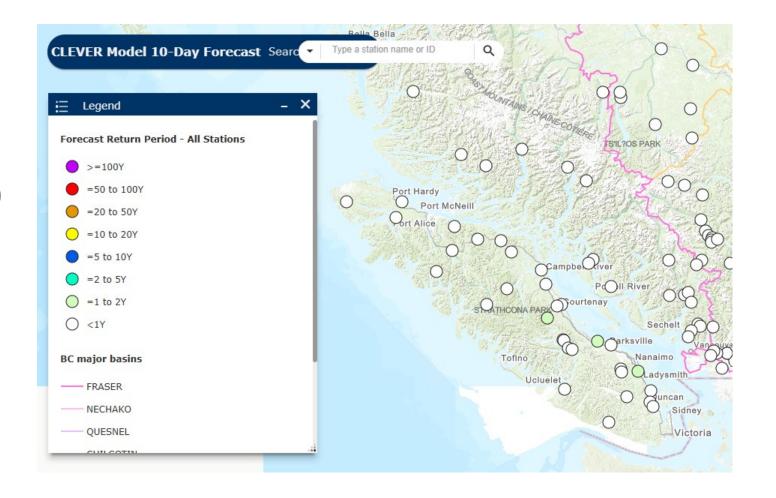
- Statistical measure that indicates the value below which a given percentage of data in a group of data falls
- Water Survey Canada uses the following classes of percentiles to assess streamflow
 - > 75th percentile is considered above normal
 - 25th 75th percentile is considered normal
 - < 25th percentile is considered below normal


- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

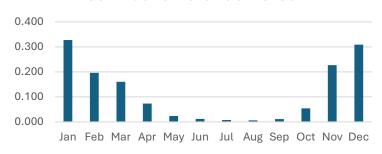
- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period


- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years

- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

- Return period or recurrence interval is the average length of time expected between two flows.
- Often used in flood forecasting and reflects the discharge rate associated with the probability of occurrence of the annual maximum discharge of the historical record.

- Compare trends on a seasonal and annual basis over time
- Typically use long-term datasets ideally over 10 years


- Mean Annual Discharge (MAD)
- Mean Monthly Discharge (MMD)
- Extremes (instantaneous or average minimum and maximum)
- Percentiles
- Return period

Mean Monthly Discharge (MMD) at 08HB0040 - Grandon Creek

Grandon Creek Analysis Example

Data available from 2012 - present

		Table 1. N	Mean monthly d	lischarge and	mean annual d	ischarge base	d on averag	e daily values a	t Grandon Ck (0	8HB011).			
	an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep O	ct N	ov De	c	Annual
2012									0.0038	0.0462	0.169	0.325	
2013	0.144	0.0815	0.153	0.0353	0.0371	0.0257	0.0056	0.0062	0.0174	0.0236	0.0717	0.0365	0.053
2014	0.168	0.306	0.437	0.1	0.0212	0.0148	0.0189	0.0155	0.0150	0.142	0.244	0.423	
2015	0.205	0.355	0.123	0.0571	0.0125	0.0086	0.0045	0.0047	0.0116	0.0156	0.114	0.543	
2016	0.34	0.323	0.372	0.027	0.0118	0.0112	0.0077	0.0039	0.0091	0.205	0.47	0.181	
2017	0.166	0.367	7 0.2	0.203	0.032	0.0113	0.0084		0.0184	0.0472	0.472	0.196	
2018	0.725	0.207	0.0942	0.125	0.0187	0.0139	0.0083	0.0051	0.0210	0.0225	0.139	0.546	0.16
2019	0.375	0.106	0.0631	0.0585	0.0131	0.0073	0.0064	0.0064	0.0156	0.0192	0.0408	0.0925	0.067
2020	0.67	0.328	0.0523	0.0396	0.0311	0.0126	0.0069	0.0035	0.0089	0.045	0.291	0.536	0.16
2021	0.442	0.0167	7 0.029	0.0273	0.0209	0.0142	0.0096	0.0037	0.0098	0.0505	0.501	0.395	
2022	0.393	0.0748	0.101	0.144	0.0518	0.0148	0.0112	0.0036	0.0029	0.0040	0.0091	0.128	0.078
2023	0.198	0.0626	0.103	0.0618	0.0156	0.0046	0.0021	0.0032	0.0053	0.0475	0.123	0.283	0.076
2024	0.3	0.123	0.117	0.0343	0.0161	0.0070	0.0034	0.0069	0.0054	0.04	0.303	0.328	0.10
2025	0.132	0.201	0.243	0.044									4
AVG (2013-2024)	0.328	0.196	0.161	0.074	0.023	0.012	0.008	0.006	0.011	0.054	0.227	0.309	0.11
Data Legend	RISC U	RISC C	Italicized values	are under review	and subject to cha	ange		1		\			/
										\		/	
							Aug N	MD =	Mo	st recent	t	Most re	ecent
oot diooba	. raa 192 192	+ 05 202	DE 10 00				5%	MAD	vear	s low Se	n		
Last discha	nge mm	1 011 202	25-10-02				J /0	שריו ו			P	years b	berow
was 0.0152	$m^{3}/s = 1$	12%MAI	D						\	/alues		MA	D

Grandon Creek Analysis Example

			Table 2. In	stantaneous i	monthly and ar	nnual maximu	m values at (Grandon Creek	c (08HB011)				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2012									0.00908	0.536	0.91	1.16	
2013	0.916	0.32	0.552	0.132	0.373	0.19	0.0149	0.102	0.449	0.122	0.495	0.0707	0.916
2014	1.74	1.47	1.62	0.286	0.156	0.0918	0.122	0.0849	0.0568	1.18	1.15	2.28	2.28
2015	0.894	1.77	0.62	0.286	0.0239	0.235	0.0651	0.0961	0.59	0.205	0.589	1.75	1.77
2016	2.25	1.16	1.94	0.0676	0.0468	0.259	0.107	0.0477	0.131	0.872	1.57	0.446	2.25
2017	1.36	2.45	0.476	0.71	0.103	0.133	0.0142	0.0276	0.166	0.726	2.49	0.801	2.49
2018	3.31	0.495	0.36	0.521	0.105	0.195	0.035	0.00987	0.315	0.203	1.09	1.97	3.31
2019	2.03	0.231	0.0988	0.237	0.0314	0.0989	0.0732	0.0574	0.162	0.211	0.421	0.621	2.03
2020	2.84	3.38	0.317	0.335	0.238	0.088	0.211	0.134	0.311	0.681	1.46	1.68	3.38
2021	2.55	0.0559	0.0608	0.0428	0.0448	0.0411	0.0183	0.031	0.138	0.262	2.93	1.02	2.93
2022	1.6	0.366	0.403	0.634	0.2	0.108	0.135	0.00528	0.00449	0.077	0.0672	1.2	1.6
2023	0.757	0.2	0.464	0.433	0.109	0.0936	0.0309	0.0593	0.165	0.5	0.804	1.35	1.35
2024	0.919	0.525	0.268	0.112	0.205	0.0762	0.0383	0.42	0.0513	0.644	1.09	1.47	1.47
2025	0.562	1.49	1.45	0.162									
MAX (Entire Period)	3.31	3.38	1.94	0.71	0.373	0.259	0.211	0.42	0.59	1.18	2.93	2.28	3.38
Data Legend	RISC U	RISC C	Italicized values	are under review	and subject to ch	ange							

Almost all monthly max values observed in 2020 and earlier

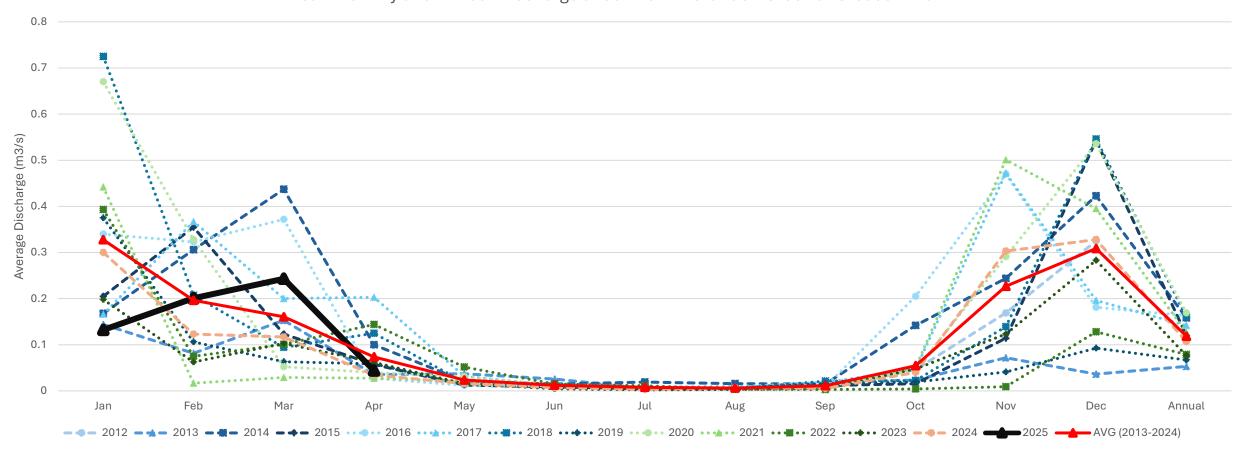
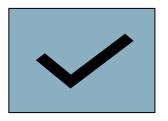

			Table 5. III	Stantaneous i	nontinty and a	illiaat illiilliilliai	ii vatues at t	Statiuon Creek	(OUTIDOTT)				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2012									0.000125	0	0.024	0.0779	0
2013	0.0489	0.0394	0.0326	0.012	0.00647	0.0108	0.00236	0.000858	0.00269	0.0103	0.0124	0.0165	0.000858
2014	0.0378	0.0192	0.177	0.0277	0.012	0.00849	0.00874	0.00861	0.00719	0.00846	0.043	0.0602	0.00719
2015	0.0533	0.0549	0.0428	0.019	0.00773	0.00353	0.000495	0.00213	0.00206	0.00515	0.0167	0.0745	0.000495
2016	0.0807	0.118	0.0504	0.0127	0.00783	0.00518	0.00253	0.00111	0.00313	0.00514	0.126	0.0572	0.00111
2017	0.0305	0.0331	0.0806	0.0475	0.0107	0.00679	0.00557	0.00548	0.0121	0.0116	0.0178	0.0492	0.00548
2018	0.167	0.0869	0.034	0.0274	0.00942	0.00723	0.00442	0.00366	0.0038	0.00877	0.0209	0.0538	0.00366
2019	0.0737	0.042	0.0238	0.016	0.00687	0.00359	0.00328	0.00364	0.00421	0.0064	0.00685	0.0165	0.00328
2020	0.087	0.0562	0.0204	0.0117	0.00726	0.00379	0	0	0	0.0146	0.0348	0.166	0
2021	0.0224	0.000795	0.00327	0.0149	0.0123	0.00866	0.00388	0.00081	0	0.00221	0.067	0.132	0
2022	0.0614	0.024	0.0386	0.0443	0.0139	0.00507	0.00295	0.00239	0.00189	0.000894	0.00381	0.00585	0.000894
2023	0.0368	0.0248	0.0171	0.0154	0.00426	0.00179	0.000778	0.000978	0.00149	0.00209	0.0201	0.044	0.000778
2024	0.0466	0.0495	0.0365	0.0112	0.00305	0.00268	0.000294	0.000513	0.00181	0.00383	0.0398	0.061	0.000294
2025	0.0281	0.0221	0.0757	0.013									0.013
MIN (Entire Period)	0.0224	0.000795	0.00327	0.0112	0.00305	0.00179	0	0	0	0	0.00381	0.00585	0
Data Legend	RISC U	RISC C	Italicized values	are under review a	and subject to ch	ange							

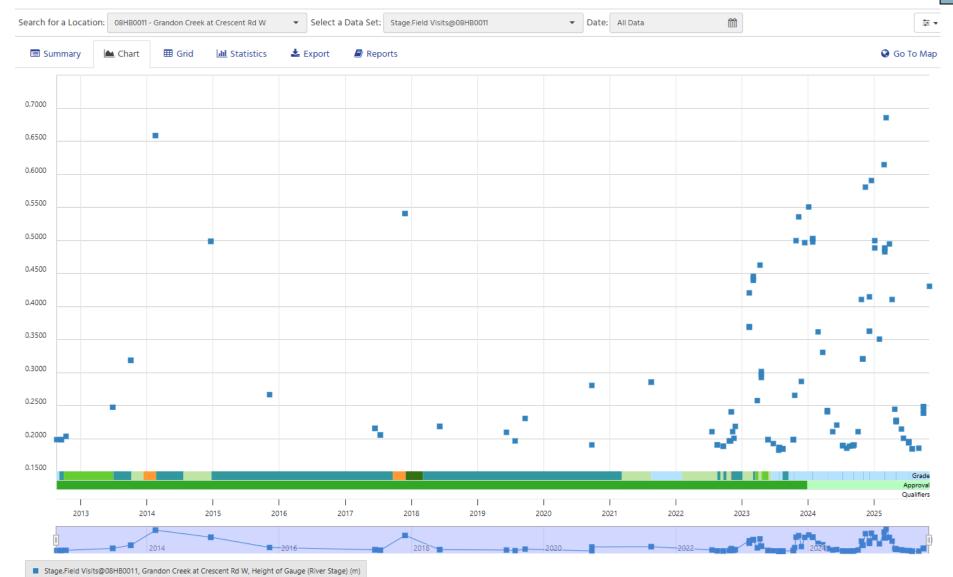
Table 3. Instantaneous monthly and annual minimum values at Grandon Creek (08HB011)


Almost all monthly min values observed since 2020

Grandon Creek Analysis Example

Mean Monthly and Annual Discharge at 08HB011 - Grandon Creek at Crescent Rd W

Uncertainty Checks



Uncertainty Checks

- Look at field visits (frequency and range), dataset grades, and review documents for clues
- Describing uncertainty in datasets according to RISC grades
 - RISC C
 - 10mm accuracy for stage.working
 - 25% rating error for discharge.working
 - RISE E (estimated)
 - estimated data due to gap fill in discharge.working
 - rating curve extrapolation in discharge.working
 - Lower threshold: < ½ lowest measured discharge
 - Upper threshold: >2x highest measured discharge
 - RISC U (unknown)
 - · typically due to unknown reference gauge stability

Grandon Creek Analysis Example

Grandon Creek Analysis Example

Station Analysis

Station Number	08HB0011					
Station Name Grandon Creek at Crescent Rd						
Computational Period	2012-2022					
Operating Agency and BCCF – Ally Badger (abadger@bccf.com)						
Contact Details						
Computational Lead	Ally Badger/Thea Rodgers					
Data Approver	Jon Jeffery P.Ag – Ministry of Environment and Climate Change					

Site Detail:

Telemetry (Y/N)	N	Regulated (Y/N)	N	Continuous or Discrete	Continuous	Power Type:	Internal battery			
Purpose:	Inst	Installed by BCCF for regional community stream network.								

Equipment

Eg. Stage sensors and discharge meters

Device Make	Unit	Precision	Period	Logging	Date of Last Calibration
and Model	Measured		Used	Interval	
Solinst	m	±0.05%	2012-	Hourly	Unknown
Levellogger		FS	2022		
(assumed 1-					
5m)					
Solinst	°C	± 0.05 °C	2012-	Hourly	Unknown
Levellogger			2022	1	
(assumed 1-					
5m)					
Barometric	kPa	Unknown	2012-	Hourly	Unknown – data downloaded
logger			2022	1	from Qualicum Beach Airport
make/model	1	I		1	(ECCC - MSC)
Unknown					

Reference Gauge and Benchmark Stabilit

nererence da	uge and	Deficitinate Stability									
Number of benchmarks	0	Number of Level Checks made in computational period	None	Reference Network Stable (Y/N)	Unknown						
Reference Gauge Used	Staff gauge	Start to End Date	2012-2022	Correction Applied	0.000m						
Datum											

No benchmarks were installed at this site for the period from 2012 to 2022. A staff gauge was installed during this time. The location of the staff gauge was in a concrete wingwall at the outlet of a culvert. It is assumed, with reasonable confidence, based on site observations that this reference gauge was stable during the pacified of practition.

It should be acknowledged that without a benchmark reference network to monitor the stability of the staff pauge there is no way of confirming the gauge correction nor the stability of the staff gauge during this period and therefore no ability to confirm water level sensor accuracy. As such, all stage data derived during this period is graded RISC-U (unknown) meaning all derived discharge data will be graded similarly.

Figure 1 - Photo of reference gauge used during operations from 2012 to 2022. Staff gauge is assumed to be stable and a gauge

Factors Influencing Measurement of Stage

Site visits occurred sporadically from 2012 to 2021 due to operational challenges. Site visits tended to be during low flows in the summer. On average two annual visits occurred to download the logger.

During each visit the staff gauge would be read and, if safe, a discharge measurement taken using a Acoustic Doppler Velocimeter (Flowtracker 1 or 2) or the bucket fill method. The staff gauge reading was used to validate the water level sensor and was used as the mean gauge height for rating curve development and validation.

Stage record was overall of fair quality. The stage sensor is an unvented pressure transducer with full scale accuracy of approximately 2.5mm logging at hourly intervals. The barometric sensor type and accuracy is unknown but was assumed to be close to 5mm. Hourly barometric data from Qualicum Beach Airport (ECCC-MSC) approximately 6km away was used to compensate the stage data. Barometric data was converted from kPa to metres and the elevation difference between the barologger location and the hydrometric site was corrected for. Factors affecting stage during 2012-2022:

- Corrections were applied in the Aquarius Next Generation 23.3.248.0 timeseries software. Offset
 corrections to the assumed datum (bottom of staff gauge) were applied between download
 periods.
- Drift corrections were applied to account for any further inconsistencies noted between the
 reference gauge reading during field visits and the corrected offset stage reading. Drift
 corrections ranged from 0.024m to -0.024m during the computational period. Visit frequency
 was limited during some operational years and likely contributed to the magnitude of drift
 observed. Another contributing factor was a minor drift in the sensor location due to sediment
 accumulation in the stilling well. It is not possible to determine exactly when this accumulation
 occurred due to lack of field visits and maintenance activities at the gauge.

Stage RISC Grades Applied

Start Date	End Date	RISC Grade	Reason
20120817	20230210	U	Reference gauge stability unverified

Factors Influencing Measurement of Discharge

Discharge measurements at this site are done using the velocity area method with Flowtracker 1 or Flowtracker 2 usually at a cross-section approximately 100m upstream in a nearby park. During storm events this cross-section likely misses some inflow from municipal drains.

Low flow discharge measurements are done using the volumetric bucket fill method with up to 10 trials repeated and averaged for volumetric flow. Bucket fill measurements are done at the outlet of the gauge pool where a confined and reliable pour point from the concrete weir exists.

Discrete Discharge Grade Applied

Number	Date	Discharge (m³/s)	Method	RISC Grade
020	2022-08-17	0.003	Volumetric	BP
021	2022-09-19	<0.001	Volumetric	BP
022	2022-11-04	0.017	Volumetric	BP

Discharge measurements conducted between 2012 and 2021 were not used for rating curve development or for validation of the output discharge dataset. When assessed, these measurements plotted consistently to the left of the developed rating curve. Use of standard practices used during their collection could not be verified due to lack of meta data.

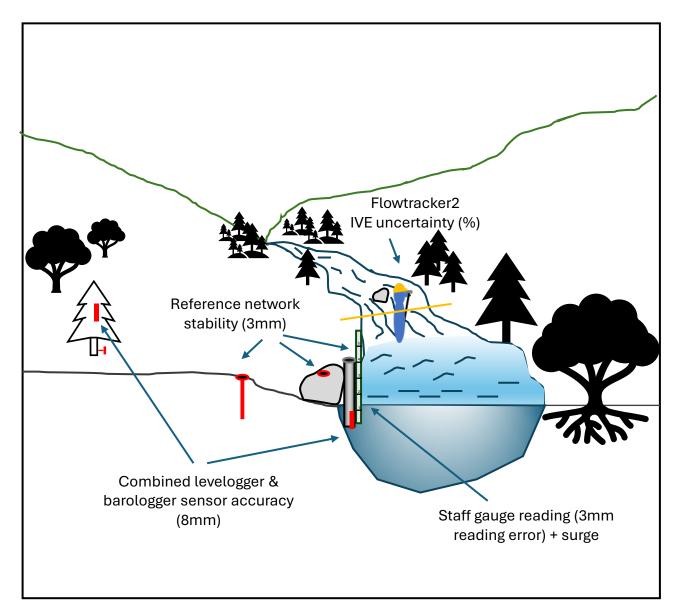
Stage-Discharge Curve

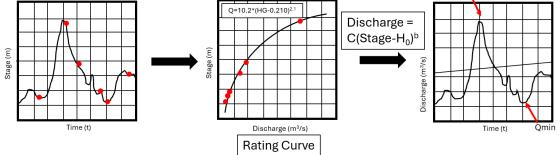
Curve No.	Start Date (YYYYMMDD)	End Date (YYYYMMDD)	7,600.00	Comments
1.00	20120817	20230210	Concrete Weir	Assumed stable

See Rating Development Document.

Computation of Discharge

The control was assumed to be stable for the computational period. The output discharge dataset was left mostly unshifted for the 2012-2022 period due to the fact that there were not enough visits to apply shifts with confidence.


The most notable period that is qualified as suspect is for the 2021 operational year. This was due to debris that had accumulated at the outlet of the control. A single time based shift was applied for the 2021 operational year based on a visit on 2021-08-17. It is not known when this debris caught on the control nor when it was cleared. Based on stage trace, it appears that debris likely caught or was introduced to the control at the gauge pool outlet on 2021-02-04. This change in discharge roughly


correlates to 60% of the shift observed on 2021-08-17. The next obvious stage increase caused by debris occurs on 2021-08-13 and accounts for the remaining 40% of the shift observed on 2021-08-17. It is not known when the debris cleared from the control. No obvious stage drops exist to suggest backwater clearing. Debris release was assumed to have occurred during high water later in 2021. The 2021-08-13 measurement shift was carried forward until 2021-10-16 when the stage at the control transitioned into the upper segment for the rest of the year. A time-based linear blend was applied to the peak on 2021-11-15 when the shift was assumed to return to zero. The 2021 period is still graded as U but is qualified as suspect based on the estimated application of shifts described above.

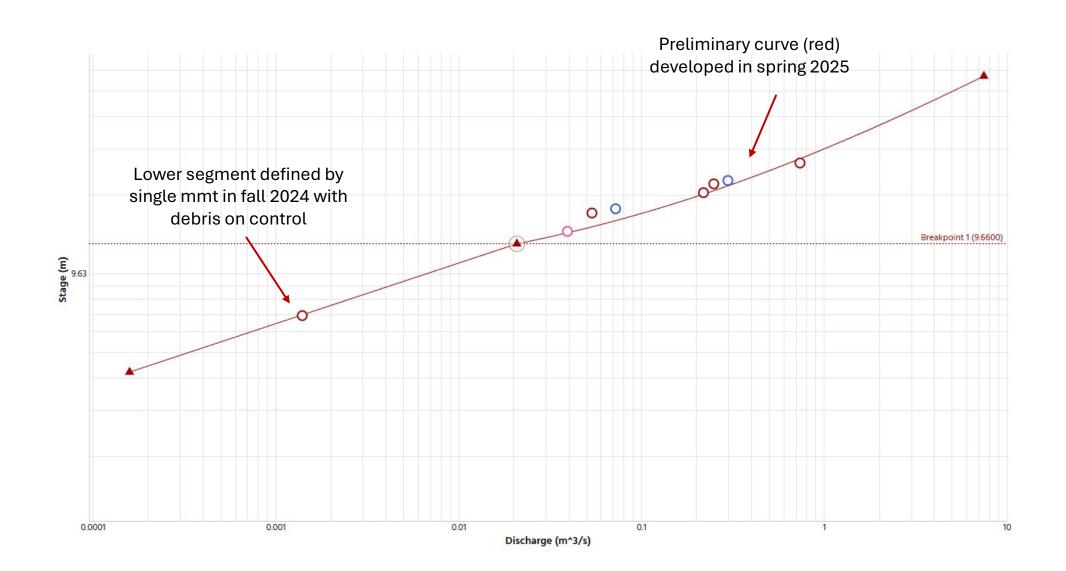
Discharge RISC Grades Applied

Start Date	End Date	RISC Grade	Reason
20120817	20221231	U	Input stage data is RISC U (unknown), hourly logging
20120817	20221231	E	Various days graded E (estimated) during gap fill. See missing data for summary

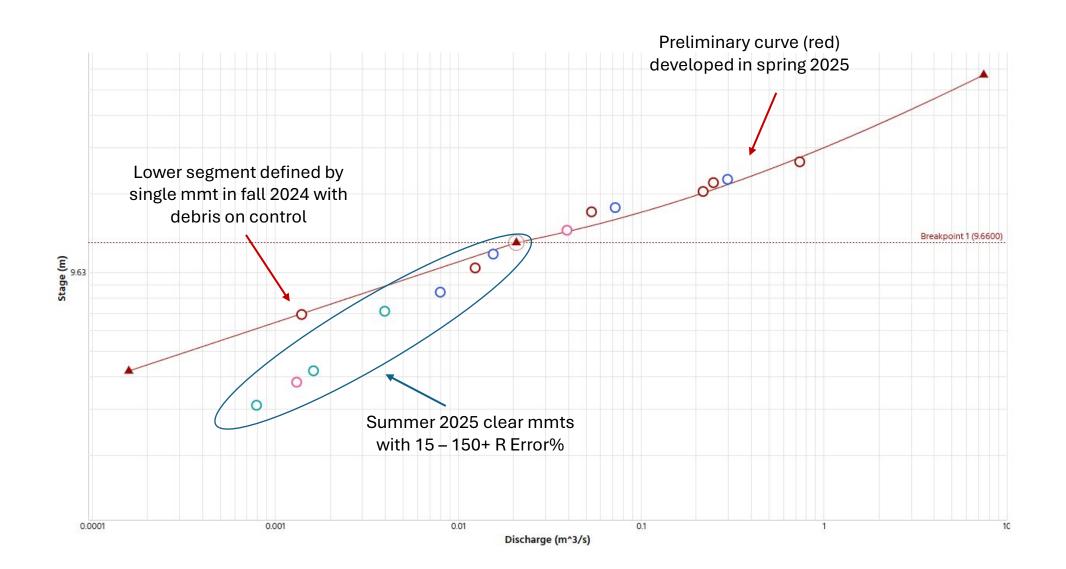
Uncertainty Everywhere!

Stage.Working

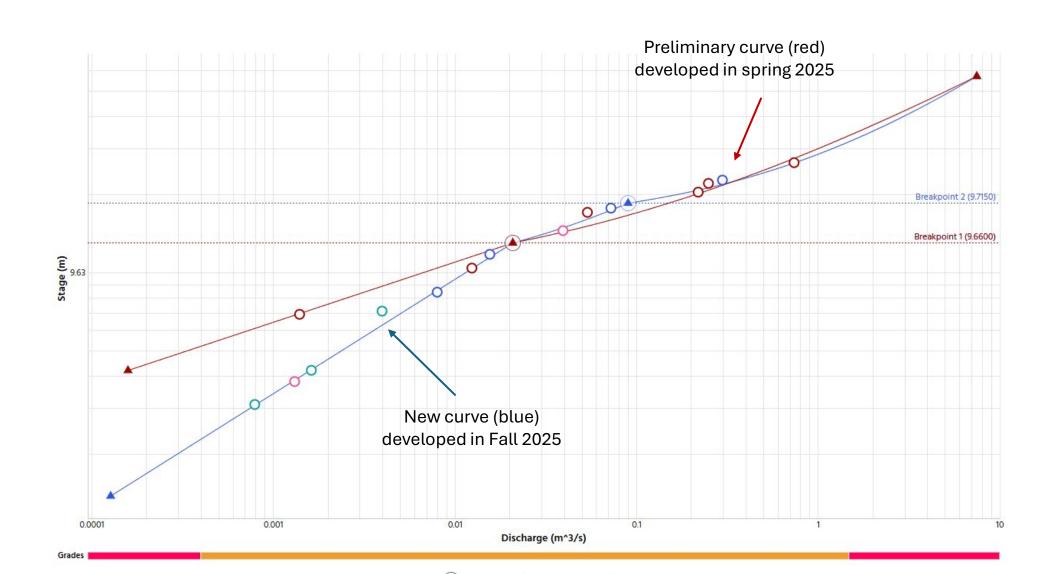
- -reference network stability
- -sensor accuracy
- -staff gauge reading-drift corrections
- -offset corrections
- -gauge corrections


Rating Curve

-mean gauge height
 -discharge mmt IVE
 uncertainty (%)
 -shift threshold
 -control observations


Discharge.Working

-input stage.working accuracy -discharge rating accuracy -shift threshold


Cottle Creek Rating Curve Example

Cottle Creek Rating Curve Example



Cottle Creek Rating Curve Example

Converting to Local Assumed Datum

- The water level (i.e. the Gauge Height) is reported above a local assumed datum. An assumed datum is an arbitrary local coordinate system.
- The Gauge Height is equal to the Bottom of Staff Gauge elev. (9.247m) + Staff Gauge Reading (0.521m) = 9.768m

The sensor
 measures water
 depth and is
 corrected to the
 water level (i.e. the
 Gauge Height)
 using an offset that
 is validated by Staff
 Gauge Readings.